Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2018

Space Weather Operation at KASI with Van Allen Probes Beacon Signals

The Van Allen Probes (VAPs) are the only modern NASA spacecraft broadcasting real-time data on the Earth\textquoterights radiation belts for space weather operations. Since 2012, the Korea Astronomy and Space Science Institute (KASI) has contributed to the receipt of this data via a 7-m satellite tracking antenna and used these data for space weather operations. An approximately 15-min period is required from measurement to acquisition of Level-1 data. In this paper, we demonstrate the use of VAP data for monitoring space weather conditions at geostationary orbit (GEO) by highlighting the Saint Patrick\textquoterights Day storm of 2015. During that storm, Probe-A observed a significant increase in the relativistic electron flux at 3 RE. Those electrons diffused outward resulting in a large increase of the electron flux > 2 MeV at GEO, which potentially threatened satellite operations. Based on this study, we conclude that the combination of VAP data and National Oceanic and Atmospheric Administration-Geostationary Operational Environmental Satellite (NOAA-GOES) data can provide improved space environment information to geostationary satellite operators. In addition, the findings obtained indicate that more data-receiving sites would be necessary and data connections improved if this or a similar system were to be used as an operational data service.

Lee, Jongkil; Kim, Kyung-Chan; Romeo, Giuseppe; Ukhorskiy, Sasha; Sibeck, David; Kessel, Ramona; Mauk, Barry; Giles, Barbara; Gu, Bon-Jun; Lee, Hyesook; Park, Young-Deuk; Lee, Jaejin;

Published by: Space Weather      Published on: 01/2018

YEAR: 2018     DOI: 10.1002/2017SW001726

Electron acceleration; Radiation belt; Relativistic electron; Space weather; Van Allen Probes

2017

Unusual refilling of the slot region between the Van Allen radiation belts from November 2004 to January 2005

Using multisatellite measurements, a uniquely strong and long-lived relativistic electron slot region refilling event from November 2004 to January 2005 is investigated. This event occurred under remarkable interplanetary and magnetospheric conditions. Both empirically modeled and observationally estimated plasmapause locations demonstrate that the plasmasphere eroded significantly prior to the enhancement phase of this event. The estimated diffusion coefficients indicate that the radial diffusion due to ULF waves is insufficient to account for the observed enhancement of slot region electrons. However, the diffusion coefficients evaluated using the distribution of chorus wave intensities derived from low-altitude POES electron observations indicate that the local acceleration induced by chorus could account for the major feature of observed enhancement outside the plasmapause. When the plasmasphere recovered, the refilled slot region was enveloped inside the plasmapause. In the plasmasphere, while the efficiency of hiss scattering loss increases by including unusually low frequency hiss waves, the interaction with hiss alone cannot fully explain the decay of this event, especially at higher energies, which suggests that electromagnetic ion cyclotron waves contribute to the relativistic electron loss process at such low L shells for this refilling event. Through a comprehensive analysis on the basis of data analyses and numerical calculations, the present study sheds light on the underlying physics responsible for the unusual slot refilling by relativistic electrons, which exhibits the complexity of both radiation belt electron dynamics and associated wave-particle interactions.

Yang, Xiaochao; Ni, Binbin; Yu, Jiang; Zhang, Yang; Zhang, Xiaoxin; Sun, Yueqiang;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2017

YEAR: 2017     DOI: 10.1002/2016JA023204

Radiation belt; Relativistic electron; Slot region; Van Allen Probes

2015

Estimation of pitch angle diffusion rates and precipitation time scales of electrons due to EMIC waves in a realistic field model

Electromagnetic ion cyclotron (EMIC) waves are closely related to precipitating loss of relativistic electrons in the radiation belts, and thereby, a model of the radiation belts requires inclusion of the pitch angle diffusion caused by EMIC waves. We estimated the pitch angle diffusion rates and the corresponding precipitation time scales caused by H and He band EMIC waves using the Tsyganenko 04 (T04) magnetic field model at their probable regions in terms of geomagnetic conditions. The results correspond to enhanced pitch angle diffusion rates and reduced precipitation time scales compared to those based on the dipole model, up to several orders of magnitude for storm times. While both the plasma density and the magnetic field strength varied in these calculations, the reduction of the magnetic field strength predicted by the T04 model was found to be the main cause of the enhanced diffusion rates relative to those with the dipole model for the same Li values, where Li is defined from the ionospheric foot points of the field lines. We note that the bounce-averaged diffusion rates were roughly proportional to the inversion of the equatorial magnetic field strength and thus suggest that scaling the diffusion rates with the magnetic field strength provides a good approximation to account for the effect of the realistic field model in the EMIC wave-pitch angle diffusion modeling.

Bin Kang, Suk-; Min, Kyoung-Wook; Fok, Mei-Ching; Hwang, Junga; Choi, Cheong-Rim;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2014JA020644

EMIC waves; pitch angle diffusion rate; precipitation time scale; quasi-linear theory; realistic field model; Relativistic electron

2014

An unusual long-lived relativistic electron enhancement event excited by sequential CMEs

An unusual long-lived intense relativistic electron enhancement event from July to August 2004 is examined using data from Fengyun-1, POES, GOES, ACE, the Cluster Mission and geomagnetic indices. During the initial 6 days of this event, the observed fluxes in the outer zone enhanced continuously and their maximum increased from 2.1 \texttimes 102 cm-2\textperiodcenteredsr-1\textperiodcentereds-1 to 3.5 \texttimes 104 cm-2\textperiodcenteredsr-1\textperiodcentereds-1, the region of enhanced fluxes extended from L = 3.5-6.5 to L = 2.5-6.5, and the flux peak location shifted inward from L ~ 4.2 to L ~ 3.3. During the following 7 days, without any locational movement, the flux peak increased slowly and exceeded the pre-storm fluxes by about 4 orders of magnitude. Subsequently, the decay rate of relativistic electrons is so slow that the peak remains over 104 cm-2\textperiodcenteredsr-1\textperiodcentereds-1 for about 30 days. The drift-resonance between ULF waves, which arose from high-speed solar wind and frequent impulses of solar wind dynamic pressure, and energetic electrons injected by substorms could be an important acceleration mechanism in this event. The local acceleration by whistler mode chorus could be another mechanism contributing to this enhancement. The plasmaspheric response to the interplanetary disturbances reveals that the enhanced outer zone is divided into two portions by the plasmapause. Accordingly, the slow loss rate in the plasmasphere due to hiss primarily contributed to the long-lived characteristic of this event. This event reveals that the outer zone population behaviors are dominated by the interplanetary variations together with the responses of geomagnetic field and plasmasphere to these variations.

Yang, Xiao; Zhu, Guang; Zhang, Xiao; Sun, Yue; Liang, Jin; Wei, Xin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA019797

Geomagnetic storm/substorm; Interplanetary magnetic field; Plasmapause; Relativistic electron; Solar wind



  1